LEVEL
PRESSURE
TEMPERATURE
INSTHUMENTATION
PASTEURIZAT1ONCONTROLS

ONE AND TWO PEN CIRCULAR CHART RECORDER

Installation, Wiring, Operation Manual

Form AlC3746
Edition 1@ October 1996

Would you like information on our other products?

Make a copy of this page, check next to the products you are interested in and fax it to us at 1-518-922-8997 or just call us af 1-800-833-0081

__Gauges
____Thermometers
_ Transmitters
RTDs

___ Recorders

Your Name

Company Name

Street Address

City, State, Zip/ Postal Code, Country, and Telephone Number

Table of Contents

SECTION 1 - GENERAL Page Number1.1 Product Description5
SECTION 2 -
INSTALLATION \& WIRING
2.1 Installation \& Wiring 7
2.2 Unpacking 7
2.3 Location 7
2.4 Mounting 7
2.5 Preparation for Wiring 8
2.6 Wiring Connections 13
SECTION 3 - CONFIGURATION
3.1 Configuration (Set Up) 18
3.2 Configuration/Jumper Positioning 19
3.3 Operation Summary 19
3.4 Start up Procedure 20
3.5 Front Panel Operation 21
SECTION 4 - SERVICE
4.1 Service 31
4.2 Changing Charts 31
4.3 Changing Pens 31
4.4 Calibration 32
4.5 Test Mode 35
4.6 Troubleshooting and Diagnostics 39
APPENDICES
A - Board Layouts
A-1 Processor Board 46
A-2 SPST Relay 47
A-3 Current Output Board 48
B - Glossary 49
C - Model Number Hardware Matrix Details 50
D - Specifications 51
E - Software Record/Reference Sheet 54
Warranty back page

FIGURES

Figure 1- Recorder Description 5
Figure 1-2 Recorder Display 6
Figure 2-1 Installation Panel Dimensions Conduit Opening Locations 8
Figure 2-2 Noise Suppression 10
Figure 2-3 Noise Suppression 10
Figure 2-4 Board and Terminal Locations 13
Figure 2-5 AC Power input 14
Figure 2-6 Thermocouple Inputs 14
Figure 2-7 RTD Inputs 15
Figure 2-8 Milliamp, Volt and Millivolt Inputs 15
Figure 2-9 SPST Relay Output 16
Figure 2-10 Current Output 16
Figure 2-11 24 VDC Power Supply Option 17
Figure 3-1 Keypad Features 19
Figure 4-1 Changing Pens 30
FUNCTION TABLES
Table 3-1 - Enable Mode Configuration 23
Table 3-2 - Program 26
Table 3-3 - Alarm Set Configuration 29
Table 4-1 - Calibration 32
Table 4-2 - Test 36
FLOW DIAGRAMS
Flow Enable Mode Flowchart 23
Flow Program Mode Flowchart 24
Flow Alarm Set Mode Flowchart 29
Flow Calibration Flowchart 31
Flow Test Mode Flowchart 35

Product Description 1.1

1.1.1 GENERAL

The instrument is a microprocessor based circular chart recorder capable of measuring, displaying and recording from a variety of inputs. Applications include temperature, pressure, flow and others. The instrument can be specified as either a single or dual pen unit.

Recording, alarm settings and other parameters are easily entered via the keypad. All user data can be protected from unauthorized changes by the Enable mode security system, and is protected against memory loss, as a result of AC power outage, by battery back-up.

The process variable input for each terminal is user configurable to directly connect to either thermocouple, RTD, mVDC, VDC, or mADC inputs. Changes in input type can easily be made by the user. Thermoccuple and RTD linearization, as well as thermocouple cold junction compensation, is performed automatically. The instrument process variable inputs are isolated. An isolated 24 VDC regulated transmitter power supply can be provided in the instrument for use with up to two 4-20 mADC sensors.

The instrument can be ordered to operate on either 115 VAC or 230 VAC power at $50 / 60 \mathrm{~Hz}$. The 230 VAC option includes a switch for selecting either 230 VAC or 115 VAC operation. The recorder is housed in a structural foam enclosure suitable for panel or surface mounting.

FIGURE 1-I

PEN1 DISPLAY
PEN2 DISPLAY
1.1.2 RECORDING

The instrument records the selected process variable on a 12 -inch circular chart. One box of standard charts is provided with each recorder. Charts are available in a wide selection of ranges. Chart rotation speed is programmable from 0.1 to 999.9 hours per revolution in 0.1 hour increments. The instrument can be ordered with one or two pens. Pen 1 is red and Pen 2 is green. Pens are the disposable fiber-tip type.

1.1.3 DISPLAYS

Each instrument is provided with a digital display and status indicator for each pen provided. (See Figure 1-1). The digital display is contigured to display the Process Value. The display includes status indicators for Alarm 1 and Alarm 2, degrees C. degrees F, engineering units. and setpoint. See Figure 1-2 (below).

Display resolution is programmable for 0.1 or 1 degree for thermocouple and RTD inputs, and zero, one, two or three decimal places for other input types.

1.1.4 ALARM SETPOINTS

Two alarm indications are standard for each pen on all instruments (relays optional). Alarm settings are programmable. Alarm type may be set as process direct or reverse (high or low).

1.1.5 PROCESS VALUE RE-TRANSMISSION OUTPUT

If an instrument is specified with mADC current output(s), any of the outputs may be programmed to operate as a process value re-transmission output.

FIGURE 1-2

Installation and Wiring

Read these instructions carefully before proceeding with installation and operation. Electrical code requirements and safety standards should be observed. Installation should be performed by qualified personnel.

CAUTION: The Instrument AC power input is specified in the model number and on the wiring label affixed to the the top center of the platen. Verify the AC power Input required by the instrument prior to proceeding with installation.

Unpacking 2.2

Remove the instrument from the carton and inspect forany damage due to shipment. If any damage is noticed due to transit, report and file a claim with the carrier. Write the model number and serial number of the instrument on the inside of the front cover of this Operation Manual for future reference.

Location 2.3

Locate the instrument away from excessive moisture, oil, dust, and vibration. Do not subject the instrument to operating temperatures outside of the 32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$ range.

Mounting 2.4

Figure 2-1 shows an installation view and physical dimensions for a panel mounted instrument. The panel where the instrument will be mounted must provide rigid support for the approximately 25 pound instrument. Adjacent instruments may be mounted within a minimum of 2 inches horizontally and 1 inch vertically, providing that proper panel support is supplied.

Panel Mounting Hardware Required: (not provided with instrument)
(4) \#10 flat head bolts with nuts
(4) lock washers

Panel Mounting:

1. Cut panel opening to the dimensions illustrated in Flgure 2-t.
2. Pre-drill four $3 / 16$ dia. holes for mounting or used the drill template molded into the case after inserting the instrument into the panel.
3. Insent the instrument in the panel opening. Firmly fasten the instrument to the panel using the nuts, bolts and lock washers.

Surface Mounting:

1. Install the mounting brackets, provided with the instrument, on the vertical sides of instrument housing. Use the brackets to fasten the instrument to the surface.

Preparation for Wiring 2.5

2.5.1 WIRING GUIDELINES

Electrical noise is a phenomenon typical of industrial environments. The following are guidelines that must be followed to minimize the effect of noise upon any instrumentation.
2.5.1.1 INSTALLATION CONSIDERATIONS

Listed below are some of the common sources of electrical noise in the industrial environment:

- Ignition Transformers
- Arc Welders
- Mechanical contact relay(s)
- Solenoids

Before using any instrument near the devices listed, the instructions below should be followed:

1. If the instrument is to be mounted in the same panel as any of the listed devices, separate them by the largest distance possible. For maximum electrical noise reduction, the noise generating devices should be mounted in a separate enclosure.
2. A separate isolation transformer to feed only instrumentation should be considered. The transformer can isolate the instrument from noise found on the AC power input.
3. If the instrument is being installed on existing equipment, the wiring in the area should be checked to insure that good wiring practices have been followed.

2.5.1.2 AC POWER WIRING

Earth Ground

The instrument includes noise suppression components that require an earth ground connection to function. To verify that a good earth ground is being attached, make a resistance check from the instrument chassis to the nearest metal water pipe or proven earth ground. This reading should not exceed 100 ohms. Each instrument should have a dedicated earth ground. Do not chain link multiple instrument ground wires.

Neutral (For 115VAC)
Ht is good practice to assure that the AC neutral is at or near ground potential. To verify this, a voltmeter check between neutral and ground should be done. On the AC range, the reading should not be more than $\mathbf{5 0}$ millivolts. If it is greater than this amount, the secondary of this AC transformer supplying the instrument should be checked by an electrician. A proper neutral will help ensure maximum performance from the instrument.

2.5.1.3 WIRE ISOLATION/SEGREGATION

The instrument is designed to promote proper separation of the wiring groups that connect to the instrument. The AC power wire terminals are located near the top of the instrument boards. The analog signal terminals are located near the bottom of the instrument boards. Maintain this separation of the wires to insure the best protection from electrical noise. If the wires need to be run parallel with any other wiring type(s), maintain a minimum 6 inch space between the wires. If wires must cross each other, do so at 90 degrees to minimize the contact with each other and reduce cross talk. Cross talk is due to the Electro Magnetic Field emitted by a wire as current passes through it.

2.5.1.4 USE OF SHIELDED CABLE

Shielded cable helps eliminate electrical noise being induced on the wires. All analog signals should be run with shielded cable. Connection lead length should be kept as short as possible, keeping the wires protected by the shielding. The shield should be grounded at one end only. The preferred grounding location is at the sensor, transmitter or transducer.

2.5.1.5 NOISE SUPPAESSION AT THE SOURCE

Usually, when good wiring practices are followed, no further noise protection is necessary. Sometimes in severe electrical environments, the amount of noise is so great that it has to be suppressed at the source. Many manufacturers of relays, contactors, etc. supply "surge suppressors" which mount on the noise source.

For those devices that do not have surge suppressors supplied, RC (resistance-capacitance) networks and/or MOV (metal oxide varistors) may be added.

Inductive Coils - MOV's are recommended for transient suppression in inductive coils connected in parallel and as close as possible to the coil. See Figure 2-2. Additional protection may be provided by adding an RC network across the MOV.

Contacts - Arcing may occur across contacts when the contact opens and closes. This results in electrical noise as well as damage to the contacts. Connecting a RC network properly sized can eliminate this arc.

For circuits up to 3 amps , a combination of a 47 ohm resistor and 0.1 microfarad capcitor (1000 volts) is recommended. For circuits from 3 to 5 amps , connect 2 of these in parallel.
See Figure 2-3.

FIGURE 2-2

FIGURE 2-3

2.5.2 SENSOR PLACEMENT (Thermocouple or RTD)

Thermocouple lead resistance should not exceed 300 ohms. It this is exceeded, instrument accuracy could be affected.

Two wire RTD's should be used only with lead lengths less than 10 feet.
If the temperature probe is to be subjected to corrosive or abrasive conditions, it should be protected by the appropriate thermowell. The probe should be positioned to reflect true process temperature:

In liquid media - the most agitated area.
In air - the best circulated area.

THERMOCOUPLE LEAD RESISTANCE
Thermcouple lead length can affect instrument accuracy since the size (gauge) and the length of the wire affect lead resistance.

To determine the temperature error resulting from the lead length resistance, use the following equation:

Terr = TLe * L where; TLe = value from appropriate table below $L=$ length of leadwire in thousands of feet

TABLE 1

Temperature error in ${ }^{\circ} \mathrm{C}$ per 1000 feet of Leadwire									
AWG No.	Thermocouple Type:								
	J	K	T	R	S	E	B	N	c
10	. 68	1.71	. 76	2.05	2.12	1.15	14.00	2.94	2.53
12	1.08	2.68	1.21	3.30	3.29	1.82	22.00	4.68	4.07
14	1.74	4.29	1.95	5.34	5.29	2.92	35.00	7.44	6.37
16	2.74	6.76	3.08	8.30	8.35	4.60	55.50	11.82	10.11
18	4.44	11.00	5.00	13.52	13.65	7.47	88.50	18.80	16.26
20	7.14	17.24	7.84	21.59	21.76	11.78	141.00	29.88	25.82
24	17.56	43.82	19.82	54.32	54.59	29.67	356.50	75.59	65.27

TABLE 2

Temperature Error in ${ }^{\circ} \mathrm{F}$ per 1000 teet of Leadwire									
AWG No.	Thermcouple Type:								
	J	K	T	R	S	E	B	N	c
10	1.22	3.07	1.37	3.68	3.81	2.07	25.20	5.30	4.55
12	1.94	4.82	2.18	5.93	5.93	3.27	39.60	8.42	7.32
14	3.13	7.73	3.51	9.61	9.53	5.25	63.00	13.38	11.47
16	4.93	12.18	5.54	14.93	15.04	8.28	99.90	21.28	18.20
18	7.99	19.80	9.00	24.34	24.56	13.44	159.30	33.85	29.27
20	12.85	31.02	14.12	38.86	39.18	21.21	253.80	53.79	46.48
24	31.61	78.88	35.67	97.77	98.26	53.40	641.70	136.07	117.49

Example:

An MRC is to be located in a control room 660 feet away from the process. Using 16 AWG, type J thermocouple, how much error is induced?

```
Terr = Tle * L
    TLe = 4.93(*)
```

Terr $=4.93\left({ }^{\circ} \mathrm{F} / 1000 \mathrm{ft}\right){ }^{*} 660 \mathrm{ft}$
Tert $=3.3^{\circ} \mathrm{F}$

RTD LEAD RESISTANCE
RTD lead length can affect instrument accuracy, since the size (gauge) and length of the wire affect lead resistance.

To determine the temperature error resulting from the lead length resistance, use the following equation:

Terr = TLe * L where; TLe = value from Table 3 if 3 wire RTD or Table 4 if 2 wire RTD $\mathrm{L}=$ length of lead wire in thousands of feet

IABLE 3 Wire RTD

AWG No.	Error ${ }^{\circ}$ C	Error ${ }^{\circ} \mathrm{F}$
10	$+/-0.04$	$+/-0.07$
12	$+/-0.07$	$+/-0.11$
14	$+/-0.10$	$+/-0.18$
16	$+/-0.16$	$+/-0.29$
18	$+/-0.26$	$+/-0.46$
20	$+/-0.41$	$+/-0.73$
24	$+/-0.65$	$+/-1.17$

TABLE4 2 WireRTD

AWG No.	Error ${ }^{\circ} \mathrm{C}$	Error ${ }^{\circ} \mathrm{F}$
10	$+/-5.32$	$+/-9.31$
12	$+/-93$	$+/-14.6$
14	$+/+3.3$	$+/-23.9$
16	$+/-21.3$	$+/-38.6$
18	$+/-34.6$	$+/-61.2$
20	$+/-54.5$	$+/-97.1$
24	$+/-86.5$	$+/-155.6$

Example:

An application uses 2000 feet of 18 AWG copper lead wire for a 3 wire RTD sensor. What is the worst case error due to this leadwire length?

```
Terr = TLe * L
    TLe = +/.46 ('F/1000 ft) from Table 3
Terr = +/-46($F/1000 ft)* 2000 ft
Terr = +/-0.920
```


Wiring Connections 2.6

All wiring connections are typically made to the instrument at the time of installation. Connections should be made at the terminal blocks, two 12 gauge wires maximum.

FIGURE 2-4

WIRING DAGRAM AND ELECTRKAL CONDUTT ENTRIES (EC1 THRU EC4) \qquad
CAUTION: RISK OF ELECTRICAL SHOCK-WORE THAN ONE DISCONNECT SWITCH MAY BE REQUIRED TO DEENERGIZE THE EQUIPMENT BEFORE SERVICING.

GROUND	\bigcirc - 0	ENTRY	BLOCK	IFRM	DESCRIPTION
CONNECTION	1234123.4	EC4	TB1	1/2	AC HOT/NEUTRAL
\square	\square 迥	EC1	TB3	1/2	24VDC +/-
CONTROLLER PWA	TB6 TB7	Ect	TB4	$1 / 2$	PEN 1 INPUT SIGNAL +/-
				3/4/5	RETURN/AUX IN/+5V
	RELAY PWA	EC1	TB5	$1 / 2$	PEN 2 INPUT SIGNAL +/-
				3/4/5	RETURN/AUX $\operatorname{NN} /+5 \mathrm{~V}$
	OPTIONS PWA	EC3	TB6	1/2	RELAYA
	OPTONS PWA			3/4	RELAY ${ }^{\text {B }}$
\square 12 12345 12345		EC3	TB7	1/2	RELAYC
				3/4	RELAYD
		EC2	TB8	1/2	CURRENT OUTPUTA
EC9 A	A A	EC2	TB9	$1 / 2$	CURRENT OUTPUT B
	EC3 EC4				
NEC CLASS 2	NEC CLASS 4				62523101 REVA

2.6.1 ELECTRICAL CONDUIT OPENINGS

The instrument case will have conduit openings provided to help mimumize electrical noise that may adversely affect the operation of the instrument. AC power, sensor input, relay and retransmission wires should be routed through separate conduit openings.

Unused conduit openings should be sealed.

WARNING: Avoid dectrical shock. AC power wiring must not be connected at the source distribution pand untll all wiring connections are completed.

FIGURE 2-5
AC instrument Power Input
Connect the 115 VAC hot and neutral to terminals 1 and 2 respectively of TB1. See
Figure 2-4 for Terminal Board locations on the instrument. Connect the 230 VAC one leg to each terminal, be sure to check the position of the Voltage Selector switch provided with 230 VAC instruments. The switch position must match the voltage input to the instrument.

FIGURE 2-6

Thermocouple Inputs
Use TB4 for the Pen 1 input, and TB5 for the Pen 2 input. Connect the positive leg of the thermocouple to terminal 1 , and the negative to terminal 2 . Be sure that the input conditioning jumpers are properly positioned for a thermocouple input. See Appendix A-1.

TB4 or TB5

FIGURE 2-7
RTD Inputs
Use TB4 for the Pen 1 input, and TB5 for the Pen 2 input. Connections are shown for 3 wire and 2 wire RTD inputs. If a three wire device is used, install the common legs to terminals 2 and 3. If a two wire device is used, install a jumper between terminals 2 and 3. Be sure that the input conditioning jumpers are properly positioned for an RTD input. See Appendix A-1.

FIGURE 2-8

Volt, Millivolt and milliamp Input
Make the volt, millivolt or milliamp connections as shown below. Use TB4 for the Pen 1 input, and TB5 for the Pen 2 input. Terminal 1 is positive and terminal 2 is negative. The milliamp input requires the installation of an appropriate shunt resistor between terminals 1 and 2. A 250 ohm resistor is provided with the instrument, one per pen. The resistor(s) are shipped in the plastic bag that is clipped to the inside of the instrument cover. Be sure that input conditioning jumpers are in the correct positions for the input being connected. See Appendix A-1.

Note:

1. Be sure 250 ohm shunt resistor is in place.
2. If un-powered input, you must wire to transmitter power supply also. See
Figure 2-11.
2.6.2 OUTPUT CONNETIONS

Relay output(s) if provided in the instrument may be assigned to alarm output functions for Pen 1 and/or Pen 2 (if present). Current outputs may be assigned to process value retransmission output for Pen 1 and/or Pen 2 (if present). The assignment of the output function is accomplished in the Program mode, see Table 3-2. SPST relays are designated as Relay A through Relay D .

FIGURE 2-9

SPST Relay Output
Connections are made to relays A through D as shown. Terminal connections are made using TB6 (Relay A, B), TB7 (Relay C, D).

TB6 Relay A Terminals 1 \& 2, Relay B Terminals 3 \& 4
TB7 Relay C Terminals 1 \& 2, Relay D Terminals 3 \& 4

FIGURE 2-10

Current Output
Connections are made to current outputs A \& B as shown. Each current output is programmable as either 4-20 mADC or 0-20 mADC. Each output must be assigned to the desired function (refer to Table 3-2) Terminal connections are made using TB8 \& TB9 for current output A \& B respectively. Connect positive lead (+) to terminal 1 and the negative lead ($)$) to terminal 2. Current outputs will operate up to 650 ohms maximum load.

FIGURE 2-1]
Transmitter Power Supply Input
If the isolated 24 VDC regulated transmitter power supply has been specified, the connections should be made as shown. Connections are made using TB3, terminal 1 is positive and terminal 2 is negative. The power supply is capable of providing the power needed by as many as 2 transmitters.

Note:
Your instrument may be factory set for your application. Refer to documentation accompanying your order.

Configuration 3.1

After completing installation and wiring of the instrument the configuration (set up) procedures must be performed to prepare the instrument for operation of the intended application. The procedures include selecting specific parameters, entering data and possible jumper positioning. Once properly configured the instrument will retain the user selections in memory. This procedure need not be repeated unless required by changes in the application.

Parameter selections and data entry are made via the front keypad. To ease configuration and operation, user entered data has been divided into several sections referred to as modes. Each mode contains a different type of data or may be used for specific operating functions. For two pen instruments, some modes are common to both pens. These modes are as follows:

Mode	Display Code	Function	Description
Off	oFF	Operation	Alarms are Off. Chart may stop rotating(selectable)
Operate	opEr	Operation	Alarms are Active
Test	tESt	Service	Tests Instrument Operation
Calibration	CAL	Service	Calibrates Instrument
Program	Prog	Configuration	Configure Operating Parameters
Alarm Set	ASEt	Configuration \&	Enter Alarm Settings
Enable		Configuration	Mode security system, can lock
Ont everything except			

Associated with each mode is a series of unique displays which are accessed via the front keypad.

Calibration and Test modes are not used as part of the instrument configuration or operation. These are used for service and maintenance functions and are discussed in Section 4.6 of this manual.

Shipped Configuration/Jumper Positioning3.2

If specified at time of order, the instrument will be pre-configured to the desired input. If not specified, refer to all tabulations labeled as "default parameters" to determine factory supplied settings. Instrument AC power input is as specified in the instrurnent model number and is shown on the ratings label. The 230 VAC option includes a switch in the instrument for selecting either 230 VAC or 115 VAC input power. If this feature is provided, verify $A C$ input and switch position before applying power to the instrument.

3.2.1 JUMPER POSITIONING

Jumpers are used to provide a security lockout feature and to condition the sensor inputs. All jumpers are typically of the three pin type and have two functions. All jumpers are located on the instrument Processor board. The instrument board layout and jumper locations are shown in Appendix A-1. Check the actual jumper position in the unit to be configured and verify the proper position for the intended application. .

The sensor input jumpers JU4, JU5, JU6 and JU7 condifion the sensor input at a basic level. Detalled Input type selection is made in the Program mode.

Operation Summary 3.3

Prior to operation the Program mode parameters and Alarm Setting(s), if used, must be selected for the application. Data and parameter entry is made by stepping through each mode and making an appropriate response or entry to each step.

3.3.1 KEYPAD OPERATION

Refer to Figure 3-t for the Keypad features. Use the SCROLL, UP and DOWN keys as indicated to program and operate the instrument.

FIGURE 3-1

Keypad

SCROLL Key
UP Key

DOWN Key

3.3.2 CONFIGURATION DISPLAYS

Each pen specified is provided with its own 4 digit LED display. These are used during configuration to display the parameter codes and values. The display located on the left of the instrument is used to show the codes for Pen 1 and those that are common between Pens 1 and 2. The display on the right is used to show the configuration codes for Pen 2 (if provided).

During normal operation, the display(s) are used to indicate process value(s) as selected in the Program mode.

3.3.3 MODE SELECTION

If the instrument is either in the Off mode or the Operation mode repeated pressing and releasing of the SCROLL key will cause the instrument to display the code corresponding to each mode that is enabled. To enter a mode, while the code is displayed, press the Down key.

Entry into any mode except the Operation and Enable modes, will cause the alarm(s) to turn off and any process re-transmission value output(s) to be 0%.

Start Up Procedure 3.4

All configuration parameters are listed in Yables 3-1 through 3-3.
For a single pen instrument, parameters for each mode are displayed in the left display. It the instrument being configured is a two pen model, a sequence of applicable parameters will be displayed in the Pen 2 display after the Pen 1 parameters have been reviewed and configured. After the Pen 2 parameters have been completed, parameters common to both pens will be configured and displayed in the Pen 1 display.

The instrument is provided with a time out feature. If the instrument is in any mode and no keypad activity takes place for 240 seconds, the instrument will time out and exit the mode automatically. The display will be the code for the respective mode. It a mode code is displayed for 5 seconds with no keypad activity, then the time out will cause the instrument to proceed to either the Operation or Off mode, depending upon which operational state was in use before entrance into the mode.

3.4.1 POWER UP PROCEDURE

A. Verify that all electrical connections have been properly made before applying power to the unit.
B. Upon power up, a brief flash on all displays (left and, if equipped, right) will occur to show the instrument is active. Then $3 X X X$ will be displayed (X representing digits), then XXXX, then XXXXX, identifying the twelve digit model number as defined in the order matrix. Next, the EPROM part number will be indicated P-XX. After the EPROM part number the software revision level will be displayed in the format rX . XX followed by P.dn (if Pen Action on Power Up, PAPu, in Program Mode is set to 0 , pens go to "HOME" position at power up). During this display, the decimal point after the "P" will blink to show the mode is active. Upon successful completion of this routine, oFF will be displayed for about three seconds. The mode displayed will be the mode that the instrument was in when the power was turned off. During this time the operator may select another mode (Enable) or non-operational mode (Test, Program, Cal).
C. If any error messages are displayed, refer to Sectlon 4.6 for a definition of these error messages and the required action.

Front Panel Operation 3.5

3.5.1 DIGITAL DISPLAY AND STATUS LED's

The digital display provided for each pen has 4 digits and a decimal point. Each digit has
seven segments and is capable of producing numeric characters from 0.9 and certain alpha
characters. The digital display is used to provide indication of process variable as well as
displaying codes used for configuration and operation of the instrument.

ALRM1	Red	Redr - Lights when Alarm 1 is on.

ALRM2
C

F Red \quad| Lights when Alarm 2 is on. |
| :--- |

Refer to Figure 1-2 for the display features.

3.5.2 KEYPAD CONTROLS

The keys provided on the keypad and their functions include:

SCROLL: Used to : \quad| Advance the display through the enabled modes. |
| :--- |
| While in a mode, used to sequence the parameter codes and |
| values. Exit some Test and Calibration functions. |
| Work in conjunction with other keys. |

UP: Used to: Exit a mode.
Turn a mode On in the Enable mode.
Increase a numerical value
Work in conjunction with other keys.
DOWN: Used to: Enter a mode
Turn a mode Off in the Enable mode
Decrease a numerical value
Work in conjunction with other keys.

Lamp Test

From the Off or oper mode, all display and status LEDs can be illuminated simultaneously by depressing the UP and DOWN keys at the same time. Any defective LEDs will not light.

3.5.2.1 OFF MODE

When in the Of Mode, all outputs and alarms are off. The chart (if selected) may stop rotating. To exit the Off mode, press the SCROLL key until OPEr is displayed, then press the DOWN key.

3.5.2.2 ENTERING THE ENABLE MODE

The Enable mode is entered by pressing and holding the UP and DOWN keys simultaneously while in the Operate or Off modes. Holding the two keys depressed for 10 seconds will cause the display to show the EnAb prompt which is the entry point into the Enabie mode.

A hardware jumper located on the Processor Board (See Appendix A-1) can be used to lock unlock the Enable mode. When the jumper is moved to the bocked position, entry into the Enable mode is not possible until the jumper is moved to the unlock position.

3.5.3 PROGRAM MODE CONFIGURATION PROCEDURE

The Program mode provides a means to configure or reconfigure the instrument operation within the limits of the hardware specified and provided. Parameters to be configured will be only those that are applicable as determined by the hardware provided.

Review the configuration procedures in Table 3-2. Use the "Your Setting" column in the table to record your selections.

3.5.3.1 ENTERING THE PROGRAM MODE

Press and release the SCROLL key until Prog is displayed. This is the mode code for the Program mode. With Prog displayed press the DOWN key to enter the Program mode. If the Prog code does not appear refer to Table 3-1 (page 23) for Enable mode instructions.

3.5.3.2 MOVEMENT IN THE PROGRAM MODE

Each time the DOWN key is pressed while a parameter code is being displayed, such as dFF, another parameter code will be displayed. Press the SCROLL key with a parameter code displayed to view the parameter value selected. Use the UP or DOWN keys to change the parameter value as desired for the application. Pressing the SCROLL key with a parameter value displayed will cause the next parameter code to be displayed.

Depressing the UP key while a parameter code is displayed will exit the program mode and the Prog code will appear in the display. Use the SCROLL key to proceed to any other mode.

3.5.3.3 ONE PEN INSTRUMENTS

For instruments specified and provided with only one pen, all configuration and operating parameters and values will appear in the left display which is dedicated to Pen 1. This is the only display provided.

3.5.3.4 TWO PEN INSTRUMENTS

Instruments specified and provided with two pens require configuration of each pen. Configuration of the Program mode is broken into three parts; First, the parameters that are associated with Pen 1 will be displayed in the left display. Next, the Program mode parameters associated with Pen 2 will be displayed in the right display. Finally, parameters that are common to both pens, such as chart rotation speed, will be displayed for contiguration in the left display. Access to either the Pen 1, Pen 2 or Unit (common) parameters may be quickly obtained by depressing the Down key with Prog displayed. The display will be PEnt, press and release the SCROLL key and display will sequence the PEn2, unit and PEn1 codes. Press the DOWN key to enter the section of the Program mode desired.

3.5.3.5 PROGRAM MODE CONFIGURATION

Refer to Table 3-2 for configuration procedures for the Program mode. All possible parameters are shown for illustration purposes. Only those parameters applicable to each respective pen will actually be shown.

3.5.4 ALARM SET MODE CONFIGURATION PROCEDURE

The Alarm Set mode allows the entry, review or attering of the alarm setting(s). Parameters to be configured will be those that are assigned in the Program mode.

Review the entry procedure and the configuration procedures in Table 3-3. Use the "Your Setting" column in the table to record your programming.

3.5.4.1 ENTERING THE ALARM SET MODE

From the Operate or Off mode, press and release the SCROLL key until ASEt is displayed. This is the mode code for the Alarm Set mode. With ASEt in the display, press the DOWN key to enter the mode. If the ASEt code does not appear refer to Table 3-1 for Enable mode instructions.

3.5.4.2 MOVEMENT IN THE ALARM SET MODE

Each time the DOWN key is pressed while a parameter code is being displayed another parameter code will be displayed. Pressing the SCROLL key while a parameter code is displayed will cause the parameter value to appear. Pressing the SCROLL key with a parameter value displayed will cause the next parameter code to be displayed. Pressing the UP key while a parameter code is being displayed will exit the Alarm Set mode and the ASEt code will appear in the display. Using the SCROLL key at this point will allow you to proceed to any other mode.

3.5.4.3 ALARM SET MODE CONFIGURATION

Refer to Table 3-3 for configuration procedures for the Alarm Set. All possible parameters are shown for illustration purposes. Only those parameters applicable to each respective pen will actually be shown. Alarm Set are adjusted on-line. The instrument will react to changes as they are made. The Decimal Point Position, as defined by the dPoS parameter in the Program mode, will affect the resolution and adjustment limits for Alarm Set mode parameters.

TABLE 3-1 ENABLE MODE CONFIGURATION PROCEDURE

To enter the Enable mode, press the UP and DOWN keys while in OPEr or oFF mode. All the display lamps will light. After 2 seconds, the display will show Cchg and the pen(s) will move to and remain at a point above the top graduation on the chart. Continue press the UP and DOWN keys, after 2 additional seconds, the display will show P dn and the pen(s) are driven below the bottom graduation on the chart. After 6 more seconds, the display will show EnAb. Release the keys.

Alarm Set Mode

DISPLAY	AVAILABLE	EACTORY	YOUR
CODE	SETIINGS	SETIING	SETTING
EtSt	on or oFF	oFF	
ECAL	on or oFF	oFF	
EPro	on or oFF	on	
EASt	on or oFF	on	

ENABLE MODE FLOW CHART

TABLE 3-2 PROGRAM MODE CONFIGURATION PROCEDURE

Press the SCROLL key until Prog is displayed. Press the DOWN key to enter the Program mode. Pen 1 will be displayed in the left display. To enter the Pen 1 parameter, press the DOWN key. To enter the Pen 2 parameter, if provided, press the Scroll key, then the DOWN key. To enter the unit parameter, press the SCROLL key with either Pen 1 or Pen 2 displayed until unit is displayed, then press the DOWN key. Press the SCROLL key to advance the display through the parameter codes and their values. Use the UP and DOWN keys to adjust the values. Atter adjusting a parameter, press the SCROLL key to proceed to the next parameter. After all selections have been made, press the UP key with a parameter in the display (not a setting) to exit the mode. For two pen instruments the parameters and values which are applicable to Pen 1 will appear in the left display, then the parameters and values which are applicable to Pen 2 will appear in the right display. Then the unit parameters and values will appear in the lett display.

AL2 $\mathrm{O}=$ None

0
f=Process Alarm - Direct 2=Process Alam-Revarse

STEP	DESCRIPTION	CODE	AVAILABLE SETTINGS	FACTORY SETTING	YOUR SETTING
			1=One decimal position 2=Two decimal positions $3=$ Three decimal positions RTD and thermocouple Inp are limited to either 0 or 1 decimal positions	uts	
6	Engineering Units Upper Value (If tnput Select $=30,31,32,33,34$)	tuu	-9999 to 9999	1000	
7	Engineering Units Lower Value (If input Select $=30,31,32,33,34$)	EuL	-9999 to 9999	0	
8	Hysteresis for Alarm Outputs	HyAo	0 to 300 degrees/units Width of Hysteresis Band (See page 51 for definition)	3	
9	Process Rounding of Displayed Value	Prnd	$0=$ No Rounding 1 to 100 degrees/units	0	
10	Display Filter Factor	dFF	$1=$ No filtering 1 to 20 units (number of values averaged)	1	
11	Process Filter Factor	PFF	1 = No filtering 1 to 20 units (number of values averaged)	1	
12	Process Value Output (If Pout $=0$ then Pou and PoL will not be displayed)	Pout	$0=$ Not selected $1=$ Selected	0	
13	Process Output Upper Value	Pou	-9999 to 9999 degrees/units	2000	
14	Process Output Lower Value	PoL	-9999 to 9999 degrees/units	0	
15	Chart Range Upper Value	Cru	-9999 to 9999 degrees/units	200	
16	Chart Range Lower Value	CrL	-9999 to 9999 degrees/units	0	
17	Pen Action on Error Condition	PAEC	```0=Pen goes to 0% of chart span 1=Pen goes to 100% of chart span```	1	

Pressing the SCROLL key with the PAEC parameter value displayed in the Pen 1 window will advance the display of a single pen instrument to the unit parameters. Pressing the SCROLL key with the PAEC parameter displayed in the Pen 1 window of a two pen instrument will advance the display to be inPS in the Pen 2 window. The Pen 2 Program riode parameter selections can be made now. Pressing the SCROLL key with the PAEC parameter value displayed in the Pen 2 window will cause the display to advance to the unit parameters.

PAGE 28

STEP	DESCRIPTION	CODE	AVAllable SETTINGS	$\begin{aligned} & \text { FACT } \\ & \text { SETI } \end{aligned}$
		Unit Parameters		
18	Relay A Assignment	rLyA	$0=$ Not assigned 1=Assigned to Alarm 1-Pen 1 2=Assigned to Alarm 2-Pen 1 3=Assigned to Alarm 1-Pen 2 4=Assigned to Alarm 2-Pen 2	0
19	Relay B Assignment	rLyb	Same selection as rLyA	0
20	Relay C Assignment	rLyC	Same selection as rLyA	0
21	Relay D Assignment	rlyd	Same selection as rLyA	0
22	Current Output A Assignoment	Cura	$0=$ Not Assigned 1=Assigned to Process Value Output-Pen 1 2=Assigned to Process Value Output-Pen 2	0
23	Current Output 8 Assignment	Curb	Same selection as CurA	0
24	Current Output A Range	CoAr	$\begin{aligned} & 0=0-20 \mathrm{~mA} \\ & 1=4-20 \mathrm{~mA} \end{aligned}$	1
25	Current Output B Range	Cobr	Same selection as CoAr	1
26	Chart Rotation Time	Crt	0.1 to 999.0 hours per rotation	1.0
27	Pen Action@ Power Up	PAPU	$0=$ Pen(s) go to the "Home" position (toward chart center) $1=$ Pen(s) remain in last position prior to power down. Detault $=0$	
28	Chart Operation in Off Mode	Coo	$0=$ Chart continues rotating in the Off mode $1=$ Chart stops rotating while in the Off mode	0

ALARM SET FLOW CHART

TABLE 3-3 ALARM SET MODE CONFIGURATION PROCEDURE

Press and release the SCROLL key until ASEt Is displayed, then press the DOWN key. Press the SCROLL key to advance the display through the parameters and their values. Use the UP and DOWN keys to select (adjust) the values. After selecting a parameter, press the SCROLL key to proceed to the next parameter. Pen 1 selections will appear in the Pen 1 window and the Pen 2 (if provided) selections will appear in the Pen 2 window. After all selections have been made, press the UP key with a parameter in the display (not a setting) to exit the mode.

STEP	DESCRIPDION	CODE	AVAILABLE SETINGS	FACTORY SETING	YOUR SETTING
1	Process Alarm 1	PAL1	-9999 to 9999 degrees/units	0	
2	Process Alarm 2	PAL2	-9999 to 9999 degrees/units	0	

If ASEt does not appear on the display refer to the Enable mode section of this manual for directions on how to determine it the ASEt mode is enabled. If ASEt appears on the display, but pressing the DOWN key causes the display to change to oFF, this indicates that no alarm(s) have been selected in the Program mode.

ALARM OPERATION

There are two types available per pen, Process Direct or Process Reverse. These are selected in the Program mode.

Process Alarm Direct - the alarm will be ON if the process value is greater than the process alarm value selected in the Alarm Set mode.

Process Alarm Reverse - the alarm will be ON if the process value is less than the process alarm value selected in the Alarm Set mode.

The alarms will be active while the instrument is in the Operate mode.
Alarm output chatter can be reduced by using the hysteresis (adjusted in Program mode) to create a deadband around the alarm point.

Service 4.1

This section contains information regarding calibration and test procedures that can be performed in the field as well as items concerning the normal maintenance of the instrument.

Changing Charts 4.2

Chart changes may be done while in the normal operating mode.

CAUTION: The chart flange assembly pin is sharp to perforate the chart. Use coution while installing the chart to avoid coming into contact with the pin.

1. DEPRESS and HOLD the UP and DOWN keys for between 2 and 3 seconds. Immediately after depressing the keys, the unit will do a Lamp Test with all LED segments and indicators lighted on the left and right display. Do not let go of keys.
2. After 2-3 seconds, the display will show Cchg, the pen(s) will move to and remain at a point above the top graduation on the chart and the chart will stop rotating. All other functions remain active (Oper, Display, etc.)
3. Open the instrument door, snap up the chart hold down lever on the chart flange assembly, raise the pen(s) using pen lifter, and remove old chart.
4. With the pen(s) held up, install new chart. Be sure to line up the chart time line so that the current time is aligned with the time setting mark on the chart platen.
5. Snap down chart hold lever and close instrument door.
6. DEPRESS and HOLD the UP and DOWN keys for between 2 and 3 seconds. Immediately after depressing the keys, the unit will do a Lamp Test with all LED segments and indica tors lighted on the left and right display. Do not let go of keys.
7. Atter $2-3$ seconds, the display will show Cchg momentarilly, then the pen(s) position and chart rotation will be restored.

Changing Pens 4.3

Open the instrument door. Refer to Figure 4-1 for pen changing procedure. This procedure is also provided on a label on the instrument chart platen. Be sure to replace the pen cartridge with the same type (color) that was removed. Be careful not to bend the pen arm while changing the pen.

FIGURE 4-1
Changing Pens

To install pen, slide pen into holder (1) and push down (2) as shown by arrows

For five replacement pens order:

To remove pen for replacement, pull up at back end (1) and push out.

Green \#60500401

Calibration 4.4

CAUTION: Do not attempl any calibrations without the proper test equipment that meets or exceeds the specificutions listed.
Press and release the SCROLL key until CAL appears on the display, then press the DOWN key to enter the mode. The display will change to CAL1. Press the SCROLL key to advance the display to the other calibration modes available. For two pen units, CAL2 and CAL 3 will only need to be required on TB4 input. Both TB 4 and TB 5 inputs must be calibrated for RTD inputs if RTD's are used for input. Table 4-1 provides a listing of field calibration routines. All instruments are calibrated prior to shipment from factory.

CAUBRATION FLOW CHART

Key

Actual Display

OnOHf Display .
Use arrow keys to turn on or off

Scroll Key

Numeric Display -
Use arrow keys to change value

Up Arrow Key

Down Arrow

TABLE 4 -I CLILBRATION PROCEDURES

Calibration
Procedure

CAL 1 Reinitialization of program and tuning values.
CAL 2 Main calibration necessary for all input types.
CAL 3 Cold Junction Compensation calibration used to correct for component variation in the CJC circuit. Necessary for thermocouple inputs.

CAL 4 Cold Junction Utijity, displays temperature the cold junction compensator is sensing. No adjustment is made with this procedure.

CAL 5 RTD input calibration. Necessary to be performed on both terminal boards.
CAL $6 \quad$ Cold Junction Compensation on/off. Used for validating thermocouple inputs with a millivolt source. (Non temperature compensating)

CAL 9 Pen position calibration used to calibrate pens to chart.

4.4.1 CAL I PARAMETER RE-INITIALIZATION

This routine is used to clear all information in the Program and Alarm Set modes. All parameters will be reset to default values. Before performing this procedure, make sure that the Program and Alarm values are written down so that they can be re-entered after Callibration 1 is completed. No test equipment required.

With CAL1 displayed, while pressing the DOWN key, press the SCROLL key. The display will momentarily blank while the initialization is in progress. Upon completion of the routine, a Pen Home function is automatically performed; P. dn is displayed during this period, with the decimal point flashing to indicate this mode. Once the Pen(s) reach Pen Home, CAL1 will be displayed.

4.4.2 CAL 2 MAIN CALIBRATION

This routine determines and saves calibration values which correct for component variations relating to the basic measuring function of the unit. A $50.00 \mathrm{mVDC}+/-.01 \mathrm{mVDC}$ source is required for testing. Make sure that the Processor board fumpers JU4 and JUS are in the non-volt positlons. See Appendix A-1 for proper positioning. After completing CAL2, be sure to re-position these jumpers to the appropriate position for your input.

With CAL 2 displayed, press and hold the DOWN key, then press the SCROLL key. Release the keys when the instrument displays hLd1. Short the input terminals or apply $0.00,+/ .01$ mVDC to TB 4 terminals 1 and 2. Press the DOWN key and dELy will appear for 10 sec onds, then SCAn will appear for 10 seconds. A calibration reference number will then appear, this should be $0+/ .50$. If this number falls outside these limits, press the SCROLL key and CAL 2 will be displayed. Perform the calibration again. Repeat the calibration until the number falls within the tolerance limits. If the number remains outside the limits, check the connections and try the calibration again. If the number does not approach the tolerance limits contact the nearest representative or the factory for assistance. With an acceptable reference number on the display, remove the short and connect a $50.00,+/ .01 \mathrm{mVDC}$ source to the TB 4 terminals 1 and 2 . Be sure to observe the proper polarity when connecting the source. Terminal 1 is positive and terminal 2 is negative. Press the DOWN key, dely will be displayed for 10 seconds and then SCAn for 10 seconds. When the calibration is complete CAL 2 will reappear.

Error recovery:

See Section 4.6 for details. Insure that the millivolt source is connected correctly and functioning properly.

The calibration can be exited when hLd1 or the calibration reference number is displayed by pressing the SCROLL key.

CAL 2 OUICK CALIBRATION

This routine will allow the operator to execute a rough calibration on their unit via the keypad with no other equipment or disturbance to established wiring. It is intended to provide a partial recovery from a calibration corruption where the necessary equipment indicated may not be available. It should be noted that this is not intended as a substitution to the main calibration procedure described earlier and may considerable deter from the accuracy of the instrument.

With CAL2 displayed, press and hold the DOWN ARROW key, then press the SCROLL key. Release both keys and the instrument will display hLd1. Pressand hold the UP ARROW key, then press the SCROLL key. The display will momentarily blank and then CAL. 1 will be displayed. Release both keys and depress the UP ARROW key. CAL will be displayed.

4.4.3 CAL 3 COLD JUNCTION COMPENSATION

This routine determines and saves calibration values which correct for component variations relating to the cold junction compensation. This calibration must be preceded by CAL 2 the main calibration, to properly calibrate the instrument. These two calibrations are all that is needed for proper operation with thermocouple inputs

Test equipment: 1-type J thermocouple
1-mercury thermometer $+\% .25$ degrees F for equivalent
Allow 30 minutes of warm up time for the instrument with the thermocoupleconnected before proceeding with callbration.

Operation

With CAL 3 displayed press and hold the DOWN key, then press the SCROLL key. Release both keys and the instrument will display hoLd. Connect the J thermocouple to TB 4 terminals 1 and 2 and place the thermometer inside the case at the bottom of the instrument. Press the DOWN key, deLy will be displayed for to 10 seconds, then SCAn for 10 seconds. The display will be the temperature to the nearest tenth of a degree C. Compare the display reading with thermometer and use the UP and DOWN keys to correct the reading. To exit press the SCROLL key and CAL 3 will be displayed again.

It the display stays in SCAn for more than 10 seconds press the SCROLL key. CAL3 should be displayed. With CAL3 displayed, while pressing the DOWN key, press the SCROLL key. The instrument will display hoLd. Press the UP key and this will store a defaut calibration value and proceed to dELy as described.

Efror recovery:

See Section 4.6 for details on specific errors. The calibration can be exited if hold or the CJC temperature is displayed by pressing the SCROLL Key.

4.4.4 CAL 4 COLD JUNTTION UTILTY

This procedure displays the temperature the cold junction compensator is sensing. No test equipment is required.

With CAL 4 displayed press and hold the DOWN key, then press the SCROLL key. Release both keys and SCAn will be displayed for 10 seconds while the instrument senses the CJC temperature. The result will then be displayed to a tenth of a degree C . The input terminals must be shorted. CAL 3 must first be performed. The displayed temperature is not the amblent temperature. It is the temperature of the CJC. To exit, press the SCROLL key and CAL 4 will be displayed.

[^0](Continued from page 33)
With CAL 5 displayed, press and hold the DOWN key and then press the SCROLL key.The display will now be PEnt to indicate that the instrument is set to calibrate the RTD input on TB 4. Press the DOWN key to change the display to PEn2 to calibrate the RTD input at TB 5. Choose the input TB to be calibrated and press the SCROLL key, hLdi will then be displayed. Connect the decade box at 100 ohm setting across the input terminals 1 and 2 and a jumper wire from terminal 2 to 3 . Press the DOWN key and dELy will be displayed for 10 secands, then SCAn for ten seconds. When hLd2 is displayed, change the decade box setting to 277 ohms to the imput terminals (do not disturb the wiring) and press the DOWN key. The display will change to dELy for 10 seconds, followed by SCAn for ten more seconds. CAL 5 will be displayed after the calibration is completed. To exit the calibration mode properly, with CAL5 displayed, press the UP key twice. To continue to another calibration, press the SCROLL key with CAL5 displayed.

Error recovery:

See Section 4.6 for details on specific errors.
The calibration can be exited when the instrument displays hLd1 or hLd2 by pressing the SCROLL key.

4.4.6 CAL 6 COLD JUNCION ITTLITY

This routine provides selection of operating modes for the cold junction compensation used for thermocouple inputs.

With CAL 6 displayed, press and hold the DOWN key, then press the SCROLL key. The instrument will display C6 and the number of the mode in effect. Press the UP or DOWN key to change the mode selection, indicated by the number to the right of the C6. Pressing the SCROLL key will exit the calibration with the last mode number displayed in effect.

The selected mode will remain in effect if power is interrupted. To retum the instrument to normal operation, CAL 6 must be exited, with mode zero selected, or CAL 1 must be executed to initialize all parameters.

Mode 0: Normal operating mode.
Mode 1: Cold Junction Compensation temperature will be internally fixed at 0 degrees C by the software to facilitate linearization testing when using an uncompensated mildivolt source to simulate the thermocouple millivolt input signal .

4.4.7 CAL 9 PEN CALIBRATION

This procedure is used to calibrate the pen(s). No special test equipment is required.
Valid inputs must be connected to TB4 and TB5 before performing this calibration. With CAL9 displayed, push and hold the DOWN key, then press the SCROLL key. Release both keys and the display will indicate PEn1. For 2 Pen instruments press the DOWN key to toggle the display between pen 1 and pen 2. With the desired pen displayed press the SCROLL key.
P.dn will be displayed while the selected pen is moved to it's "HOME" position (toward the chart hub) with the decimal point flashing to indicate this mode. Once "Pen Home" is found, the pen will move to the inner ring and PEnL will be displayed. At this point, one of two adjustments may be made; Pen Arc or Zero and Span:
Pen Arc - To adjust the pen arc, the UP and DOWN keys are pressed simultaneously to draw an arc for visual reference. The display will show P uP while the selected pen moves upscale to the top stop position. The pen then moves back downscale to nominally place the pen at the outer ring, (100%) of the chart. The display will now display ArC. The pen arm may be loosened and the length adjusted to a position and angle to place the pen tip near the outer ring then retighten the pen arm. Press any key and the pen will drive to "HOME", then back to the inner ring (0%) and PEnL will be displayed.
Zero and Span - To begin a pen zero, with PEnL in the display, the UP or DOWN key may be pressed to move the pen to the low end of the chart span (0%). When adjusted, press the SCROLL key and P UP is displayed while the pen is moved to the outer edge (100\%) of the chart, then PEnH is displayed. To adjust pen span, use the UP and DOWN keys to adjust the pen for the high end (100%) of the chart. When adjusted, press the SCROLL key and P dn will be displayed for about 5 seconds while the pen is moved to the 50% point on the chart, then PEn 1 is displayed.
The calibration may now be performed again to verify the accuracy, or press the UP key twice to exit back to the CAL mode.

Test Mode 4.5

To enter the Test mode, press and release the SCROLL key until tESt appears on the display then press the DOWN key. tSt1 will be displayed, press and release the SCROLL key to advance the display to the desired test. Tests 1,2 and 3 are performed as a unit so the display will advance directly to St 4 from $\mathrm{tSt1}$. Listed in Table 4-2 are the test procedures available. Test 1, 2 and 3 are performed on start up, periodically during operation, and on entry into the Test mode. Test 4 is executed on entry into and periodically during the Operation mode. These tests can be used as a trouble shooting aid.

TEST MODE FLOW CHART

TABLE 4-2 TEST PROCEDURES AND DESCRIPTION

Test	Description
Test 1	Microprocessor internal RAM test. Used to check the processor RAM to make sure it is functioning correctly.
Test 4	External RAM checksum test; instrument test and identifies how many times Errors 16 or 17 have occurred.
Test 5	Verifies that all keys are functional and all LEDs are working.
Test 6	Used to verify that all relay outputs are working correctly.
Test 7	This procedure will allow operator to adjust the current output value to check the output and to test the operation of the external device.
Test 8	Pen and chart motor operational check.
Test 9	Verifies that the auxiliary inputs are functioning properly.

4.5.1 TEST I INTERNAL RAM TEST

Tests the Random Access Memory internal to the microprocessor. No special test equipment is required.

With tSt1 displayed, press and hold the DOWN key, then press the SCROLL key. $\mathbf{1 S t 1}$ will be displayed momentarily while the test is in progress. Upon successful completion, the instrument will proceed to Test 2.

4.5.2 IEST 4 EXTERNAL RAM CHECKSUM TEST

This is a checksum test to verity the integrity of data stored in RAM and indicate the number of times the instrument has had an Error 16 or 17. The unit may have automatically recovered from these errors. No special test equipment is required.

With tst4 displayed, press and hold the DOWN key then press the SCROLL key. The display will blank momentarily, then momentarily display two numbers, and then tst4 will be displayed. These numbers indicate the number of times Error 16 and 17 have occurred respectively. Test 4 can be executed again, or another test may be selected.

4.5.3 TEST 5 KEYPAD/DISPLAY TEST

This test allows the operator to verity that the keys work and that all display elements can be lighted. No special test equipment is required.

With tSt5 displayed, press and hold the DOWN key, then press the SCROLL key and then release both keys. The display will go blank. The following code will be displayed while the corresponding key is pressed:

Key	Disolay
SCROLL	SCrL
UP	uAro
DOWN	dAro
UP and DOWN	(Alt LED's and segments lit)
SCROLL and UP	(exit)

To exit, press the SCROLL and UP keys simultaneously, $\mathbf{t S t 5}$ will be displayed.

4.5.4 TEST 6 RELAY OUTPUT TEST

Allows the operator to verity that the Relay output(s) are working. A volt/ohm meter will be required to test the output.

With tSt6 displayed, press and hold the DOWN key, then press the SCROLL key. oFF will be displayed. For SPST Relay outputs, connect the meter across the relay output in the ohm scale. Press and release the DOWN key to advance through the following sequence:

RELAY ON
DISPIAY SPST

rLYA	A
rLYb	B
rLYC	C
rLYd	ofF

To exit, press the SCROLL key and tSt6 will be displayed. The existence of Relay output(s) is dependent upon the hardware configuration.
4.5.5 TEST 7 CURRENT OUTPUT TEST

This test allows the operator to verify that the current output(s) are functioning properly or will allow the selection of an output value for testing of associated equipment. A milliamp meter is required for testing.

With $\mathbf{t S t 7}$ displayed press and hold the DOWN key, then press the SCROLL key. The display will indicate CurA, for the first current output. By pressing the DOWN key, the instrument will display Curb, and then back to CurA. Choose the desired output to be tested and connect the miliazmp meter across the output terminals being tested. Be sure to observe the proper polarity when connecting the meter. Terminal 1 is positive and terminal 2 is negative. Press the SCROLL key and the display will indicate 4 milliamps. Use the UP and/or DOWN key to increase or decrease the current output in 1 mADC steps from 0 to 20 mADC . The current output reading should be +/-0.1 mADC at any output value. A $+/-5 \%$ of span adjustment for the current output(s) is provided by using the potentiometer adjacent to the current output on the Current Output board. To exit the test, press the SCROLL key and tS 17 will be displayed. The existence of a mADC current output is dependent upon the hardware configuration.

4.5.6 TEST 8 PEN/CHART MOTOR TEST

This test allows the operator to verify that pen and chart motors are functioning properly. No special test equipment is required.

With tSt8 displayed press and hold the DOWN key, then press the SCROLL key. The display will show ALL while the test is in progress. This test functions automatically. The chart speed will be at maximum, 72 seconds per revolution. Starting at the current pen position, pen 1 will move (sweep) upscale for about 5 seconds, then downscale for about 5 seconds. Pen 2 (if provided) will sweep in the opposite direction. The pens will continue to cycie until the test is exited. To exit, press the SCROLL key. The display will show tSt8.

4.5.7 TEST 9 AUXILIARY INPUT TEST

This test allows the operator to verify that the pen position input(s) are functioning properly. With tst9 displayed, press and hold the down key, then press the scroll key. The display will show Al1, Auxiliary Input 1. By pressing the down key, the recorder will advance through the selection sequency: PF1, Ai2, PF2 and back to Ai1. With the desired input selected, depress the SCROLL key. The corresponding value will be displayed. The operator must connect a voltage source to the appropriate terminals and verify that the supplied voltage, typically 0 to 5 volts, is displayed, ± 0.1 volts.

Note: If PF1 and PF2 are displayed, a fixed value of 0.0 will be seen.
To terminate the test, press the scroll key. The display will show tst9.

Trouble-shooting and Diagnostics 4.6

The Trouble-shooting Guidelines Section consists of two columns. The first column is a list of some possible instrument conditions. The second column is a list of steps that should improve the condition. The steps should be performed in order until the condition improves or all the steps have been completed. If the instrument condition has not improved, contact the nearest representative or the factory for assistance.

Trouble-shooting should be performed by qualified personnel using the proper equipment and following all safety precautions. Whenever possible the trouble-shooting should be accomplished with the electrical power disconnected. The instrument contains static sensitive components so care should be taken to observe anti-static procedures.

Condition

Dlaplay(s) Is/are blank

Correction Steps

1. Verify that the correct instrument power, as indicated on the wiring label on the platen, is supplied to TB 1 terminals 1 \& 2. Check the position of the power select switch, on 230 VAC models, correctly indicates the power that is connected to the instrument. If the switch does not indicate the correct voltage, reposition as necessary. If the voltage is not correct, check the power source.
2. Turn off the instrument power. Wait about 5 seconds then turn the power on again.
3. Turn off the instrument power, open the cover, loosen the platen hold down screw, and swing the platen out of the way. Inspect the instrument for poor connections
4. Turn off the instrument power. Press and hold the UP and DOWN keys. Turn on the power. Hold the keys pressed for about 10 seconds. If the display(s) light, the model number, Program and Alarm Set mode parameters will need to be re-entered (pages 26-29 or Software Ref. Sheet, page 54, if already filled out).

Model Number Displayed during power up ls Incorrect

1. Turn off the instrument power, wait 5 seconds then reapply the power. Verify that the number displayed during the power up sequence is the same as indicated on the label affixed to the platen. If the number displayed is incorrect perform the following steps:
a. Turn off the power to the instrument. Press and hold the UP and DOWN keys. Turn on the power and keep the keys pressed until the model number displayed resets to 31×0 -$0000-0021$, where the digit " X " is determined by the firmware installed. Release the keys and turn off the power.
b. To enter the correct model number press and hold the SCROLLand DOWN keys and turn on the instrument power. 31×0 should be displayed. Wait about 5 seconds and release the keys. The display should stay 31×0. Use the UP/DOWN keys as necessary to change the displayed number to match the first 4 digits of the model number as indicated on the label on the platen. After adjusting the first 4 digits to the proper values, press the SCROLL key and the display will change to 0000. Use the UP/DOWN keys to set the next 4 digits of the model number to the correct values. Press the Scroll key and the display will be 0021. Use the UPDDOWN keys as necessary to adjust the last 4 digits of the number. Press the SCROLL key and the power up sequence will complete. The Program and Alarm Set mode parameters will need to be re-entered (pages 26-29 or Software Ref. Sheet, page 54, if already filled out).
2. Verify that the Program and Alarm Set mode parameters are correctly set (pages 26-29 or Software Ref. Sheet, page 54, if already filled out).
3. Turn off the pawer to the instrument. Wait about 5 secands and turn the power on again. Confirm that the model number displayed during the power up sequence indicates that the output(s) is/are present in the instrument. See Appendix C far the model number explanation/decoding. This number should match the number on the label affixed to the platen.
4. Turn off the power to the instrument. Open the cover. Loosen the platen hold down screw and swing the platen open. Inspect the instrument Relay board (See Figure 2-4) for the presence of the output device(s). A relay output will appear to be a cube. The output will not work if the hardware is not present. Inspect that the output terminal connections are present and firmly attached.
5. Check the output(s) operation by performing Test 6 as described in the Test Section. It the output(s) function in the Test mode re-examine the Program and Alarm Set mode parameters settings (pages 26-29 or Software Ref. Sheet, page 54, if already filled out).
6. If the output appears not to turn off remove the power to the instrument. Open the cover and loosen the platen hold down screw. Swing the platen open. Clip the resistor located on the Relay Board adjacent to the output(s) that seem to stay on (See Appendix A-2). A .01 microfarrad, 1 KV capacitor should be connected from the terminal listed below, for the output where the resistor indicated was removed, to the AC ground.

Relay A	R1	TB 6	Terminal 1
Relay B	R2	TB 6	Terminal 3
Relay C	R3	TB 7	Terminal 1
Relay D	R4	TB 7	Terminal 3

Close the platen and tighten the hold down screw. Close the cover and furn the power on to the instrument. Check the operation of the output(s).

mADC Output(s) Malfunction

1. Verity that the Program mode parameters are correctly set (page 26).
2. Turn Off the power to the instrument. Wait about 5 seconds and turn the power on again. Confirm that the model number displayed during the power up sequence indicates that the output(s) is/are present in the instrument. See Appendix C for the model number explanation/decoding. This number shouid match the number on the label affixed to the platen.
3. Turn off the power to the instrument. Open the cover. Loosen the platen hold down screw and swing the platen open. Inspect the instrument Current Output board (See Figure 2-4) for the presence of the output device(s). The output will not work if the hardware is not present. Inspect that the output terminal connections are present and firmly attached. Close the platen and tighten the hold down screw. Close the cover and turn on the power.
4. Refer to the Test section and carry out the procedure for the Current Output(s) Test 7 (page 38). If the current output operates properly in the Test mode re-check the Program mode parameters (page 28 or Software Ref. Sheet, page 54, it already filled out).
5. Verify that the Program mode parameters are properly set (page 26 or Software Ref. Sheet, page 54, if already filled out)
6. If the process vaiue in the display exceeds the chart upper or the chart lower values selected in the Program mode the pen will appear stuck at the chart upper or lower edge respectively. Re-configure values as needed by the application (May require a new chart).
7. Perform Test 8 as described in the Test section of the manual (page 36). If the pen(s) operate in Test 8 , perform the pen calibration, Cal 9, as described in the Catibration Section of the manual (page 32). Return the instrument to the oPEr and check the operation of the pen(s).
8. Verfiy instrument not in chart change function.

Error Code Displayed

$\mathbf{S n S r}$-Sensor Break or Over Range

1. Inspect the sensor for proper operation and connection to the instrument. Acceptable sensor ranges for the instrument are listed in the Specifications section of Appendlx D.
2. Verify that the Program mode input selection matches the sensor input connected (page 26 or Software Ref. Sheet, page 54, if already filled out).
3. Check that the input conditioning jumpers on the Processor board (Appendix A-1) are in the proper position for the sensor input. Check that the jumpers are in the proper position for the Terminal Board where the sensor is connected.
4. Perform the calibration procedure(s), as described in the Calibration Section (4-4), for the sensor input type.
5. Perform the steps listed for the SnSr Error Condition. (above)

Lo - Input more than 10\% Under Span

1. Perform the steps listed for the $\mathbf{S n S r}$ Error Condition. (above)
© - display overranged (the "broken 6" appears on the left segment of the display)
2. If this error code is displayed as a Program or Alarm Set mode parameter perform the CAL 1 procedure as described in the Calibration Section of the manual (4-4).
3. If this error code appears as part of the model number during the power up sequence, follow the steps listed for the "Model Number is not correct" condition (page 40).
4. If this error appears, check the Program mode parameter dPos, if not 0 , change to 0 and see if the error clears.

Er 1-Microprocessor RAM
Failure

1. Tum off the power to the instrument. Wait 5 seconds, and turn the power on.
2. Turn off the power to the instrument. Open the cover, and loosen the platen hold down screw. Swing open the platen and inspect that the microprocessor chip (U5) is properly seated in the socket located on the Processor board (Appendix A-1). Close the platen and tighten the screw. Close the cover and turn on the power.

Er 2-External RAM
Failure

1. Turn off the power to the instrument. Wait 5 seconds, and turn the power on.

Er 3-EPROM Checksum
Failure

1. Perform the steps listed for Er 1 except that the EPROM (U7) on the Processor board should be inspected.
2. Check the connections to the instrument for the RTD Irput Calibration (CAL5) as described in the Calibration Section (4-4). Repeat the RTD Input Calibration.

Er 5 - No Zero Crossings
Detected

1. Turn off the power to the instrument. Wait 5 seconds, and turn the power on.
2. Connect the instrument to another $A C$ power source.

Er 6 - AC line below 43 HZ

1. Turn off the power to the instrument. Wait 5 seconds, and turn the power on.
2. Connect the instrument to another $A C$ power source.

Page 44

Er 7-AC line over 64 HZ	1. Turn off the power to the instrument. Wait 5 seconds, and turn the power on. 2. Connect the instrument to another $A C$ power source.
Er 8 - Cal 2 Volt Input Error	1. Check that 50 mVDC is properly connected to the instrument and is within the tolerance limits as indicated in the CAL2 procedure of the Calibration Section (4.4).
	2. Turn off the power to the instrument and open the cover. Loosen the platen hold down screw and swing the platen open. Inspect the Processor board (Appendix A-1) to insure that the input conditioning jumper JU4 is in the non-volt position. The jumper must be in the non-volt position to perform the CAL 2 procedure properly. Close the platen and tighten the hold down screw. Close the cover and turn on the power to the instrument.
	3. Perform the CAL2 procedure as described in the Calibration Section (4.4).

Er 9 - ADC Reference
Number Error

1. Perform the CAL2 procedure as described in the Calibration Section (4.4).

Er10-ADC Reference
Vokage Error

1. Perform the CAL2 procedure as described in the Calibration Section (4,4).

Er11-Cald Junction
Compensation Error

1. Perform the CAL3 procedure as described in the Calibration Section (4.4).
2. Check that 50 mVDC is properly connected to the instrument and is within the tolerance limits as indicated in the CAL2 procedure of the Calibration Section (4.4).
3. Turn off the power to the instrument and open the cover. Loosen the platen hold down screw and swing the platen open. Inspect the Processor board (Appendix A-1) to insure that the input conditioning jumper JU4 is in the non-volt position.
4. Perform the CAL2 procedure as described in the Calibration Section (4.4).

Er13-RTD CAL5 input
Error

1. Check that resistance device is of the correct value and properly connected to the instrument and is within the tolerance limits as indicated in the CAL5 procedure of the Calibration Section (4.4).
2. Turn off the power to the instrument and open the cover. Loosen the platen hold down screw and swing the platen open. Inspect the Processor board (Appendix A-f) to insure that the input conditioning jumpers are in the correct position for the RTD input for the Terminal Board being calibrated. For TB 4, JU4 ishould be in the non-volt position and JU6 in the RTD position. For TB 5, JU5 should be in the non-volt position and JU7 in the RTD position.
3. Perform the CAL5 procedure as described in the Calibration Section (4.4).

Ert4-Cold Junction
Compensation Error

1. Perform the CAL3 procedure as described in the Calibration Section (4.4).

Er15-Ground Reference
Tolerance Error

1. Perform the CAL2 procedure as described in the Calibration Section (4.4).
2. Record all Program and ASEt mode parameters. Perform CAL 1 procedure as described in the Calibration Section (4.4). Re-enter the Program and ASEt mone parameters.

Er17-Calibration
Checksum Error

1. Perform the calibration procedures that are needed for the input sensors that will be used (4.4).

Er36 - Incorrect Crystal
For Digital Comm.

1. Turn off the power to the instrument, wait 5 seconds, then turn the power on.

Er37-Incorrect Micro.
For Digital Comm.

1. Turn off the power to the instrument wait 5 seconds, then turn the power on.

Page 46

Appendix A
 Board Layout - Jumper Positioning

FIGURE A-1 - Processor Board

SPST RELAY BOARD

If the relay is connected to a	Resistor	Relay
high impedance AC device,	R1	Relay A
the snubber network used to	R2	Relay B
protect the relay contact may	R3	Relay C
cause the output to appear	R4	Relay D
to be activated when the		
relay is off. To cure the		
problem, cut the snubber		
resistor for the output that is		
being affected.		

FIGURE A-3 - Current Output Board

mA OUTPUT BOARD

Appendix B
 Glossary

Display Filter Factor

This parameter is adjustable from 1 to 20 which represents the number of scans per second of the process variable that are averaged together before updating the displayed and recorded value. The factory default value is $1=$ no filtering. Display code dFF.

Hysteresls

This parameter is adjustable from 0 to 300 units representing the width of the band (half above and half below setpoint). Used with Alarm outputs to reduce cycling. For instance, with a value of 4 and an alarm point of 70 the output will turn $O N$ when the process variable drops to 68 and stay ON until 72 is reached, then turn OFF the output. Does not apply to Limits. Factory default $=3$. Display code HyAo.

Input Correction

This parameter is adjustable from -300 to 300 units and is used as a method to compensate for a linear sensor error. Factory default is $0=$ no correction. Display code iCor.

Pen Action on Power Up

This parameter specifies whether the pen, on a power-up, will drive to the "Home" position (center of chart), then return to it's correct position. This is done as a cal. check. Settings are $0=\mathrm{go}$ to "Home" and $\mathbf{1}=$ remain in last position prior to power down. Default is 0 .

Platen

The flat surface in the instrument upon which the chart rotates.

Process Filter Factor

This parameter is adjustable from 1 to 20 which represents the number of scans per second of the process variable that are averaged together before updating the process value used for alarm and PV output purposes. The factory default value is $\mathbf{i}=$ no filtering. Display code PFF.

Process Output

Allows re-transmission of the process variable. Factory default is $0=$ not selected. Display code Pout. If selected, must be assigned to a current output and scaled using Process Output upper and lower values.

Process Output Upper and Lower Values (Used in conjunction with process output)

These parameters specify the process value range over which the assigned current output will decrease linearly from 100% to 0%. If the process value is greater than Pou the output will be 100% If the process value is less than PoL the output will be 0%. Factory default values are 2000 for the upper value and 0 for the lower value. Display codes Pou (upper) and PoL (lower).

Process Rounding

This parameter is adjustable from 0 to 100 units and is used to round the process value to the nearest value specified. This is for display only and does not affect the recorded value or control action. Intended for use where the engineering units span is large, to reduce display fluctuation. Factory defautt is $0=$ no rounding. Display code Prnd. (e.g. Prnd =3, Process Value $=-6,-3,0,3,6,9 \ldots$...

Appendix C - Order Matrix

1 Recorder Only
2 Recording Controiler
PEN 2
0 None
1 Recorder Only
2 Recording Controller*

RELAY OUTPUTS

\qquad
0 None
1 One SPST
2 Two SPST
4 Four SPST

FIXED CHARACTER

$4-20 \mathrm{~mA}$ OUTPUTS (Isolafed)

0 None
1 One
2 Two

TRANSMITTER POWER SUPPLY

0 None
1 24VDC Regulated/solated

PEN I AUXILLIARY IMPUT

0 None
2 Remote Setpoint (Recording Controller Only)
PEN 2 AUXILLIARY INPUT
0 None
2 Remote Setpoint (Recording Controlier Only)

FIXED CHARACTER

ENCLOSURE OPTION
2 STANDARD NEMA4X
VOLTAGE ($50 / 60 \mathrm{~Hz}$)
1115 VAC input
2 115/230 VAC Input

OPTION SUFFIX

00 No Options
01 Sealable Chartplato
02 Event Pen
03 Combination of 01802

- Pen 2 available as Fec./Contr. only if Pen 1 is Rec/Contr.

Note: 4-20mA inputs are accommodated using the $1-5 \mathrm{~V}$ input and a 250 ohm Shunt

Appendix D - Specifications

Measurement Error Limit	- Type J, K, T, E, N, C T/C's and RTD $\pm 0.25 \%$ of reading plus 1 degree @ 25 degrees C - Type R, S, B T/C's $\pm 0.25 \%$ of span @ 25 degrees C - mA, mV, and VDC $\pm 0.25 \%$ of scaled span plus 1 Whole Digit @ 25 degrees C
Ambient Temperature Error	0.01\% of span per degree C deviation from 25 derees C
Scan Rate	$1 \mathrm{scan} / \mathrm{sec}$ and
Display Decimal Positions	One, two or three decimal places (0.1 or 1 degree for T/C or RTD)
Noise Rejection	Normal mode, 85 dB minimum at 60 Hz or greater. Common mode, 90 dB minimum, 115 VAC maximum.
Line Voltage	$115 / 230 \mathrm{VAC} \pm 1 . \% 50 / 60 \mathrm{~Hz}$
Power Consumption	25VA maximum
Operating Temperature	32 to $131^{\circ} \mathrm{F}$
	0 to $55^{\circ} \mathrm{C}$ (ambient)
Storage Temperature	-40 to $149^{\circ} \mathrm{F}$
	-40 to $65^{\circ} \mathrm{C}$
Humidity	0 to $90 \% \mathrm{RH}$, noncondensing
Dimensions	16.77 H $\times 14.12 \mathrm{~W} \times 7.75$ Deep
Weight	25 pounds maximum
Sensor Fault Detection	Displays SnSr for sensor or transmitter break. Alarms go off. Relays are de-energized. Fauft detection is not functional for 0-5V or $0-20 \mathrm{~mA}$ inputs.
Agency Approvals	UL and CUL pending
Enclosure	NEMA 4X
Transmitter Power Supply	Provides up to 40 mA of current at 24 VDC
Warranty	3 years, see inside back cover for details

Input Sperifications			
THERMOCOUPLE			
TYPE	RANGE	TYPE	RANGE
J	0 to 760 C	E	0 to 750 C
	0 to 1400 F		0 to 1400 F
K	0 to 1360 C	B	200 to 1800 C
	0 to 2500 F		400 to 3300 F
T	-220 to 400 C	N	0 to 1300 C
	-330 to 750 F		0 to 2370 F
A	200 to 1650 C	c	200 to 2300 C
	400 to 3000 F		390 to 4170 F
S	200 to 1650 C		
	400 to 3000 F		
MILLIAMPS 4-20mADC (with resistor)		VOLTS	RTD
		0 to 5VDC	100 OHM
		1 to 5 VDC	(.00385 OHMS/OHM/C)
			-140 to 400 C
MILLIVOLTS			-220 to 750 F
0 to 25 mV			
0 to 50 mV			
10 to 50 mV			
(can be scaled to any portion of this range)			
ALARM ADJUSTMENTS			
Process Alarm		-9999 to 9999 units	
Hysteresis		0 to 300 units	
ALARM OUTPUT			
Relay	SPST		
	115VAC: 5.0A Resistive, 1/8HP or 250 VA		
	230VAC: 2.5 A Resistive, $1 / 8 \mathrm{HP}$ or 250 VA		

PROCESS OUTPUT

4-20 or 0-20 mADC into 650 ohms maximum load.

DISPLAY

Digital Display	Two possible; one per installed pen. Red LED's 0.56 * high.
Status Indicators	LED indicators for Alarm 1 and Alarm 2, and process value units, as applicable for each model (${ }^{\circ} \mathrm{F},{ }^{\circ} \mathrm{C}$, and U$)$.
RECORD	
Chart	12 inch circular chart; 100 charts furnished with each instrument if standard range
Chat Range	-9999 to 9999 degrees/units
Chart Drive	DC stepper motor
Chart Rotation	User configurable from 0.1 to 999.9 hours per revalution
Pen Type	Disposable Fiber-tip
Pen Color	Pen 1 -Red
	Pen 2-Green
Pen Response Time	<9 seconds over chart span
Chart Accuracy	$\pm 1.0 \%$ of chart span from displayed value

Appendix E
 Software Reference Sheet

ENAEMEMODE	
EtSt	
ECAL	
EPro	
EASt	

Pen1 Pen2				
inPS			rLyA	
iCor			rLyb	
AL1			rLyC	
AL2			rLyd	
dPoS			CurA	
Euu			Curb	
EuL			CoAr	
HyAo			Cobr	
Prnd			Crt	
dFF			PAPU	
PFF			Coo	
Pout				
Pou				
PoL				
Cru				
CrL				
PAEC				

Technical Bulletin
 AJ-300 Series Circular Chart Recorder Event Pen Operation and Wiring

The information below illustrates operation and wiring procedures for AJ-300 Series Circular Chart Recorders equipped with an Event Pen Option. As always, be sure to disconnect all sources of AC power wired to the instrument prior to performing service.

CIRCUIT BOARD ATTACHED TO SIDE WALL OF CASE

Externally Triggered

The diagram above illustrates proper witing for 110 VAC actuated extemally triggered event pen input. It is recommended that a $1 / 4 \mathrm{amp}$ fuse be placed in line with hot leg (LI) to protect the circuitry in the event of a short.

Internally Triggered

The diagram above illustrates proper wiring for 110 VAC actuated internally triggered event pen input. It is recommended that a $1 / 4 \mathrm{amp}$ fuse be placed in line with hot leg (1.1) to protect the circuitry in the event of a short, For internal wifing, the recorder MUST have one SPST relay available. The desired setpoint for actuation of the pen is set via the keypad interface, and is in accordance with the relay chosen (R1, R2, R3 or R4). Please consult the operations manual supplied with the recorder for additional information about the optional Refas Interface Card or programming of the Alarm Value.

Warranty and Return Statement

These products are sold by The Anderson Instrument Company (Anderson) under the warranties set forth in the following paragraphs. Such warranties are extended only with respect to a purchase of these products, as new merchandise, directly from Anderson or from an Anderson distributor, representative or reseller, and are extended only to the first buyer thereof who purchases them other than for the purpose of resale.

Warranty

These products are warranted to be free from functional defects in materials and workmanship at the time the products leave the Anderson factory and to conform at that time to the specifications set forth in the relevant Anderson instruction manual or manuals, sheet or sheets, for such products for a period of three years.

THERE ARE NO EXPRESSED OR IMPLIED WARRANTIES WHICH EXTEND BEYOND THE WARRANTIES HEREIN AND ABOVE SET FORTH. ANDERSON MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE PRODUCTS.

Limtations

Anderson shall not be liable for any incidental damages, consequential damages, special damages, or any other damages, costs or expenses excepting only the cost or expense of repair or replacement as described above.

Products must be instalied and maintained in accordance with Anderson instructions. Users are responsible for the suitability of the products to their application. There is no warranty against damage resulting from corrosion, misapplication, improper specifications or other operating condition beyond our control. Claims against carriers for damage in transit must be filed by the buyer.

This warranty is void if the purchaser uses non-factory approved replacement parts and supplies or it the purchaser attempts to repair the product themselves or through a third party without Anderson authorization.

Returns

Anderson's sole and exclusive obligation and buyer's sole and exclusive remedy under the above warranty is limited to repairing or replacing (at Anderson's option), free of charge, the products which are reported in writing to Anderson at its main office indicated below.

Anderson is to be advised of return requests during normal business hours and such returns are to include a statement of the observed deficiency. The buyer shall pre-pay shipping charges for products returned and Anderson or its representative shall pay for the return of the products to the buyer.

Approved returns should be sent to: ANDERSON INSTRUMENT COMPANY INC. 156 AURIESVILLE ROAD FULTONVILLE, NY 12072 USA

ATT: REPAIR DEPARTMENT

Note: Must be marked with return authorization number (RMA). Obtainable from Anderson Customer Service or local distributor.

[^0]: 4.4.5 CAL 5 RTD INPUT

 This procedure determines and saves calibration values selating to RTD inputs. This calibration must be preceded by CAL 2 to properly calibrate the instrument. Both RTD inputs must be calibrated and both inputs must have valid inputs during the calibration. Decade boxes with $.01 \%$ resolution or equivalent are required. Make sure that the Processor board jumpers JU4, JU6 and JU5, JU7 are in the proper positions. See Appendix A-1. (Continued on next page)

