

Hybrid - Welded Heat Exchanger with multi-flexible configuration for robust and efficient heat transfer

Choosing the right Heat Exchanger can be a complex matter

How can one single heat exchanger technology cover all your key priorities?

- In a complex decision process, neglecting key priorities may lead to low performance or even plant failure things you would re-do if you could.
- With more than a century of heat exchanger experience, SPX knows the needs and priorities of most industries.
- Let SPX guide you through complex choices to the right solution for your specific application and needs.

If these are some of your priorities...

	WHAT COULD HAPPEN IF YOU COMPROMISE HERE?	WHAT CAN YOU EXPECT FROM SPX AND HYBRID?		
Very high working temperature, (including temperature shocks)	Equipment failure/ replacement	Longer production uptime		
Very high working pressure (including pressure shocks)	Equipment failure/ replacement	Longer production uptime		
Small footprint	High conversion/ engineering costs	Cost savings, accessibility		
High heat recovery, extreme small log mean temperature difference	Higher running costs	Cost savings, lower CO2 footprint		
Cleanability, manual and CIP	Reduced efficiency	Operation at desired specification after cleaning		
Resistance to corrosion	Equipment failure/ replacement	Long service life		

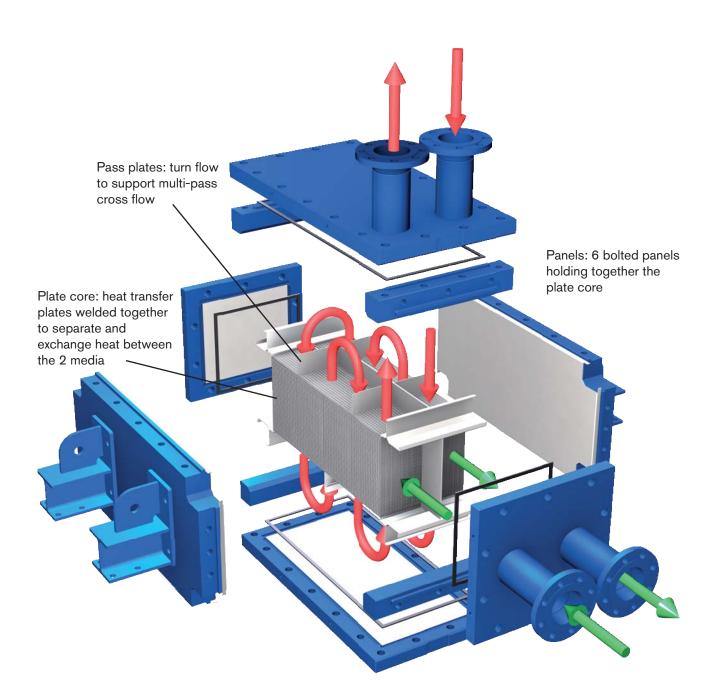
... Hybrid is for you!

Based on a multi-flexible configuration platform, Hybrid is designed to operate under harsh conditions where other heat exchanger technologies can fail, have a shorter operating lifetime, or reduce operational efficiency.

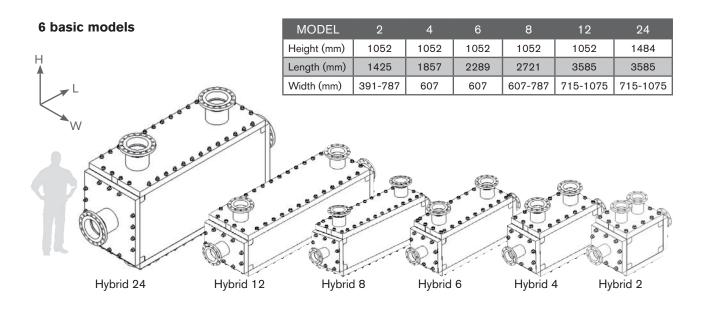
What's more, easy access makes high-pressure cleaning of Hybrid plates simple, effective and fast!

Industries and applications served

Power, Oil & Gas, Chemical & Petrochemical, Metals & Mining

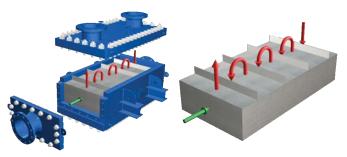

Common Applications

- Steam condenser
- District heating units
- Solution cooler and heater
- Process condenser
- Reboiler
- Gas sweetening
- Gas Dehydration
- Crude oil stabilizer
- Crude oil heater
- Cryogenic chiller

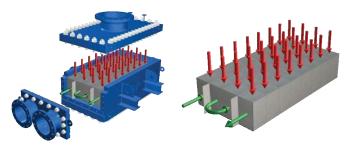

- ✔ 350°C
- ✓ 32 bar (up to 40) design pressure
- Corrosive media
- ✓ Gas/steam/air with low pressure drop
- Pass-through of particles/solids

The heart of the matter

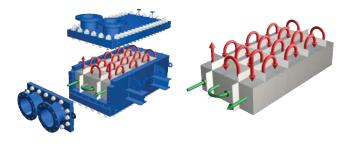
The central plate core is contained by 4 movable pressure panels, and the 2 flows are separated by the plate wall and 4 corner bars.



Unseen flexibility based on a range of standard variants...


Each available in various standard configurations:

Example 1


Low number of passes tube side system in combination with single pass corrugated side system for low NTU value applications and/or low pressure drop requirements

Example 2

Single pass tube system in combination with corrugated side sandwich system for multiphase applications (e.g. condensation)

Example 3

and

the

lexibility

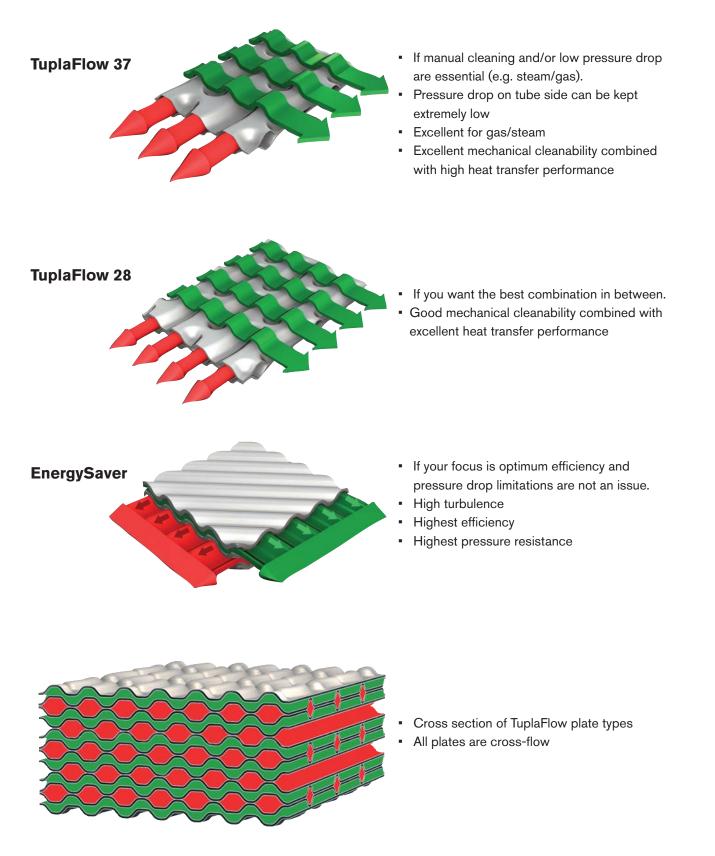
High number of passes tube side system in combination with corrugated side sandwich system for close temperature approach applications (heat recovery)

high number of variants

eliminate

... to meet all your needs

- We will always find the perfect solution
- Perfect adaptability for almost any application
- Full utilisation of pressure drop to maximise thermal efficiency
- Close temperature approach down to 1°C possible
- Low pressure drop possible even at high mass flows even for gas/steam
- Perfect for condensation and evaporation (including vacuum condensation)
- Large connection sizes possible
- Non-symmetric flows handled, even with perfect pressure drop utilisation

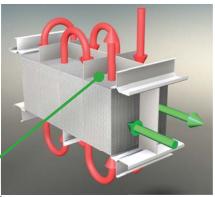

456 standard Combinations per plate material:

MODEL	2	4	6	8	12	24
Number of thermal steps	2	4	6	8	12	2x12
Stack height versions	5	1	1	3	5	5
Possible pass combinations on primary side (currugated side)	3	3	3	3	3	3
Possible pass combinations on secondary side (tubular side)	4	5	7	6	9	9

- Design Pressure: 16 or 32 Bar
- Design Code:
 ASME VIII, Div 1 or PED
- Design Temperature: -28/-40 to 350°C

3 plate variants - depending on your needs

Hybrid features 3 very different plate types!


Do fouling or scaling impact your production planning?

- Spare capacity, filter systems or CIP cleaning systems are expensive to install.
- 2 of the 3 plate options can be cleaned effectively using manual high pressure cleaning.

Openable design Bolted Hybrid can be opened. The tube-side plate gap can be high-pressure cleaned (TuplaFlow).

TuplaFlow plate pack

Huge flexibility based on standard variants

MODEL	2	4	6	8	12	24		
Heat transfer in m ²	6-25	28-33	41-50	55-97	105-218	210-436		
Max. nozzle size Tubu side	DN450 18"	DN350 14"	DN350 14"	DN500 20"	DN500 20"	DN500 20"		
Max. nozzle size Corrugated side	DN300 12"	DN300 12"	DN300 12"	DN300 12"	DN300 12"	DN500 20"		
	Standard: 1.4404 (316L)							
Material plates	On request: 1.4571 (316Ti) / 1.4301 (304) / 1.4539 (904L) / 1.4547 (254SMO) / 2.4819(276) /							
	2.4602(C22) / 2.4605(C2000) / and others							
Design temperature	According to ASME VIII: -28°C to 350°C							
	According to PED 97/23 EK: -40°C to 350°C							
Design pressure	16 and 32 bar versions, including full vaccuum.							
Design code	PED 97/23 EG / EN 13445							
	ASME. VIII, Div. 1							
Flange ratings	Welded neck flanges							
	EN 1092-1 / ANSI B16.5							
Nozzle loads	API 662 Table II							

Customisation Options:

- Plates in other alloys
- Fully welded vessel construction (not openable)
- Venting options
- Sub cooling
- >5000 m² heat transfer area

variants eliminates over-sizing

Your local contact:

SPX Flow Technology Platinvej 8, 6000 Kolding, Denmark Phone: +45 70 278 444 Fax: +45 70 278 445 Email: heat.europe@spx.com www.apv.com www.spxft.com

For more information about our worldwide locations, approvals, certifications, and local representatives, please visit www.apv.com.

SPX Corporation reserves the right to incorporate our latest design and material changes without notice or obligation. Design features, materials of construction and dimensional data, as described in this bulletin, are provided for your information only and should not be relied upon unless confirmed in writing.